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Abstract—An analysis is made for free convective flow about a vertical cylinder embedded in a saturated
porous medium, where surface temperature of the cylinder varies as x*, a power function of distance
from the leading edge. Within the framework of boundary-layer approximations, exact solution is
obtained for the special case where surface temperature varies linearly with x, i.e. A =1. For other
values of A, approximate solutions based on local similarity and local non-similarity models are obtained.
It is found that the local similarity solutions are sufficiently accurate for all practical purposes.
Analytical expressions for local surface heat flux and overall surface heat flux are obtained.

NOMENCLATURE

A, constant defined by equation (6b);

C, constant defined by equation (58);

constant defined by equation (31¢);

C,,  specific heat of the convective fluid;

constant given by equation (31d);

constant given by equation (41c);

F, transformed stream function defined by
equation (17);

G, auxiliary function defined by equation (32a);

g, acceleration of gravity;
K, permeability of the porous medium;
ks thermal conductivity of the porous medium;

L, length of the cylinder;

Py, quantity defined by equation (31a);
P,,  quantity defined by equation (40a);
quantity defined by equation (41a);
p. pressure;

0, surface-integrated heat-transfer rate;
Q1, quantity defined by equation (31b);
(., quantity defined by equation (40b);
Qs, quantity defined by equation (41b);

q, local heat transfer rate per unit area;

Ra,, modified local Rayleigh number,
Ra, = Kp gBx(T,,— Ty)/pet;
r, radial coordinate;
ro, radius of cylinder;
S, spanwise dimension, S = 27r,;
T, temperature;
u, velocity component in x-direction;
Uy, reference velocity, u, = Kp . gf(Tw—~ T )/1t;
v, reference velocity in r-direction;
X, axial coordinate.

Greek symbols

o, equivalent thermal diffusivity;
B, coefficient of thermal expansion;
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n, pseudo-similarity variable defined by
equation (15);
0, dimensionless temperature defined by

equation (18);
Ay constant defined by equation (6b);

I viscosity of convective fluid;
2 density of convective fluid;
g, stretched streamwise coordinate defined by

equation (16);
&0,  constant defined by
/ ot
=(2 " ).
Eo=( /ro)\/ (KmegA)’
&1, constant defined by
poL
&= Qo) /(-—-—>;
E TN \Kpo (T Ty
@, auxiliary function defined by equation (32b);
v, stream function.

Subscripts
c, quantities associated with a cylinder;
D, quantities associated with a flat plate;
w, quantities on the surface of the cylinder;
o0,  quantities at infinity.

1. INTRODUCTION

THE STUDY of free convection from the outer surface
of a heated vertical cylinder embedded in a saturated
porous medium has important geophysical and
engineering applications. For example, as a result of
volcanic activities or tectonic movements, magmatic
intrusion may occur at shallow depths in the earth’s
crust [1]. The intrusive magma may take the form of a
cylindrical shape. If the intrusive magma is trapped in
an aquifer, free convective flow can be generated in the
groundwater adjacent to the hot intrusives. A study of
temperature distribution around the intrusives and the



806 W. J. Minkowycz and PING CHENG

associated heat flux distribution will aid in an assess-
ment and the evaluation of geothermal resources during
geophysical exploration. Furthermore, the heat-
transfer coefficients obtained from this study will be
useful to estimate the cooling rate of intrusive bodies
and consequently the life span of a geothermal
reservoir; it will also be useful to calculate the heat
loss of underground casing and piping systems for the
optimum design of geothermal power plants.

It has been established that a viable geothermal
reservoir for power generation must have a hot heat
source for the continuous supply of energy, and a highly
permeable formation to ensure sustained delivery of
fluids to production wells at adequate rates [2]. Under
these conditions, free convective flow in geothermal
reservoirs will have a high Rayleigh number. Accord-
ingly, boundary-layer approximations, analogous to
the classical viscous theory, can be applied to free
convective flow in a porous medium. This has been
done by Wooding [3] to treat the problem of free
convection about a line source and a point source,
as well as for free convection above two finite heated
vertical plates embedded in a porous medium. The
boundary layer approximations were also invoked by
McNabb [4] to treat the problem of free convective
flow in a porous medium above a horizontal heated
plate. Most recently, Cheng and his co-workers [5,6]
have obtained similarity solutions for free convection
in a porous medium adjacent to vertical and horizontal
plates with wall temperatures being a power function
of distance.

In this paper we shall study convective flow about a
vertical heated cylinder embedded in a saturated
porous medium, where surface temperature of the
cylinder varies as x*, a power function of distance from
the leading edge. Within the framework of boundary-
layer approximations, exact solution is obtained for the
special case where surface temperature varies linearly
with x, i.e. A = 1. For other values of /, approximate
solutions based on local similarity and local non-
similarity methods [7, 8] are obtained. It is found that
the local similarity solutions are sufficiently accurate
for all practical purposes.

2. FORMULATION OF THE PROBLEM

Consider the problem of steady free convection
about a vertical cylinder of radius ro and embedded
in a saturated porous medium with a prescribed
axial symmetric wall temperature. If we assume that
(1) the convective fluid and the porous medium are
everywhere in local thermodynamic equilibrium, (2) the
temperature of the fluid is everywhere below boiling,
(3) properties of the fluid and the porous medium are
everywhere isotropic and homogeneous, and (4)
Boussinesq approximation is employed, the governing
equations in a cylindrical coordinate system are given
by

0 é

5;(rv)+a—x(ru) =0, (1)

éT  oT 1¢/ oT\ é*T
u—+v—=of ~—{r— |+ , 4)

or ) ox?

p=p[1-B(T-T)], (5)
where u and v are the velocity components in x and
r-directions, p, u and f are the density, viscosity and
the thermal expansion coefficient of the fluid, K is the
permeability of the saturated porous medium,
o = knf/(pCp)y is the equivalent thermal diffusivity
where k,, denoting the thermal conductivity of the
saturated porous medium and (pC,), the density and
specific heat of the fluid. T, p and g are respectively
the temperature, pressure and the gravitational
acceleration. The subscript “oc™ denotes the condition
atinfinity. The appropriate boundary conditions for the
problem are

v=0,

F = o0,

T=T,=T,+Ax",
u=0 T=T,,

(6a,b)
(7a,b)

F=ro,

where 4 > 0. In equation (6b) we have assumed that
the prescribed wall temperature is a power function of
distance from the leading edge.

The continuity equation is automatically satisfied by
introducing the stream function ¥ as

R .
ru=g// and rv=—%. (8)

or 0x
The governing equations and boundary conditions in
terms of Y and T are given by

o ap\ 10% p.PKgoT
A R =, 9
6r<r6r> rox? u o or @
oy oT cT 2 eT T
WD _d (v D)+l o)
ér 0x  0x Or ér\ or ox
and
r=ro. o, (1)
0x
row. Yo, (12)
or

with the remaining two boundary conditions for T
being given by equations {6b) and (7b).

3. BOUNDARY-LAYER EQUATIONS

The boundary-layer approximations similar to those
by Wooding [3], McNabb [4], Cheng and Minkowycz
[5] and Cheng and Chang [6] can now be applied if
we assume that convection takes place within a thin
layer adjacent to the vertical surface of the cylinder.
With these simplifications, equations (9) and (10)
become

¢ /10 «PgK oT
—f—(——‘”)=”‘ PaR oL (13)
or\r or u ar
and
0 ( 0T oy T oy eT
2O (GC\ L (T _waTy (14)
or\  or or dx  0Ox Or
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We now attempt to transform equations (13) and (14)
into a set of ordinary differential equations. For this
purpose we introduce the following new dimensionless
variables

(pryB(Tw—Tm)>* ["0 (r2
n=\——""——] | 5|51
o 2 \rd >:|

%
HoX )) 2 1 16)

2
5_6<Kpooﬁg(Tw_Too _;(Rax)é,

where Ra, = Kp,, gBx(T,, — T.,)/ux is the modified local
Rayleigh number in a saturated porous medium. It is
worth mentioning that for a thin boundary layer where
rdoes not differ appreciably from ro, the quantity inside
the brackets in equation (15) reduces to y (where
y = r—ro) and consequently #n reduces to the flat plate
similarity variable given in [5]. Next we introduce the
dimensionless stream function and temperature F and
@ given by

Kp o T,— T, ¥
y= m(ﬁ“’—ﬂ(u———ﬁ‘) F(&.n) = aro(Ra)*F(E ),
(17
T—-T,
0E.n) = 7 18)

which are identical to the relations for a flat plate [5]
except that F is now a function of both ¢ and 7, and
ro is introduced to give proper dimension for .

It can be shown that velocity components in terms
of the new variables are

Kp., Bg(Tw— T,
u=—£~Bg—LW——)F"’ (19)

and
ro <apr Bg(T,,— Tw)>*
v=r|————"—
2r ux
x[(1=-A)(nF,—EF)—(1+ HF], (20)
whereas the governing equations (13) and (14) with

appropriate boundary conditions in terms of the new
variables are

F,=0,, (21)
0 oo (1+4)
Eali(l+f’7)5ﬁ:|+TF9,,—/lF,,6
1-4
= &E0—0,F), (22)
FiE0)=0, 6¢E0=1, (23a,b)
F{¢,0)=0, 6 00)=0. (24a,b)

It is worth noting that equations (21) and (22) are
identical to those for free convection about a vertical
flat plate [5] if £ = 0. Thus, any deviation from ¢ =0
is a measure of transverse curvature effects. We shall
now obtain approximate solutions for A # 1 and exact
solutions for 1 = 1.

4. APPROXIMATE SOLUTIONS FOR 4 # 1
(A) Local similarity solution
When the value of £ or the values of 8, and F; are
both small, the RHS of equation (22) can be deleted.
With this approximation, equations (21}-(24) do not
have derivatives with respect to ¢ and thus can be
considered as a coupled pair of ordinary differential
equations with £ regarded as a prescribed parameter.
This is the so-called local similarity approximation.
Thus, the local similarity equations are given by

F// — 0[, (25)
and
144
a +én)0”+<é +%F>9’—,{F’6 =0, (26

with boundary conditions given by

F(E0=0, 0¢0=1, (27a,b)

F(&,0)=0, 6, 0)=0, (28a,b)

where the primes denote partial differentiation with
respect to n. We now obtain numerical solution to
equations (25) and (26) by an integral method. To this

end, we first integrate equation (25) and impose con-
ditions (27a) and (27b) to give

n

Fi,n)= f 0(&, nydn. (29)
0

We now turn our attention to equation (26) which can

be considered as a second-order ordinary differential
equation for 6. The solution for 8 is given by

0(E.n) = jU 0u(&m) epr" PuEn) dn}+ Cx]
0 0 0

X CXP{ - fPl &n) dn} dn+Dy, (30)

where
1+4
Px(é,n)E[é+%F(é,'7)}/(l+£n), (31a)
AF'8 162
Q.1 =l+én = Lrén’ (31b)
C1 =

o e foo o
[ frafer

(31c)

and

D =1, (31d)

with constants (31c) and (31d) obtained by imposing
equation (30) with boundary conditions (27) and (28).

By assigning a successive value of £ and assuming
initial profile for 6, values of stream function and
temperature at a particular location (&,7) can be
obtained by iteration from the integrals given by
equations (29) and (30). The solution thus obtained is
an approximate one since some terms in the energy
equation are assumed to be small.
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(B) Local non-similarity solution

More accurate results can be obtained by the
so-called local non-similarity solution which retains the
full energy equation. To this end, we let

oF

G, n = % (329)
06
o n) = 7 (32b)
and equations (21) and (22) can be rewritten as
F=¢, (33)
(1+Ene"+ <c w2 #—ca)ef
= AF'0 + éF ¢. (34)

It is noted that equations (33) and (34) do not have
derivatives with respect to £. However, we now have
four unknowns and therefore two more equations are
needed. For this purpose, we differentiate equations (33)
and (34) with respect to ¢ to give

G ' =¢, (35)
(1+fn)¢”+<é+—;iF>¢ (1;l>F¢+AGO
—A+60 =m0+ 2 L Fo—0G), 36)

2 To¢

where we have made use of equation (32).

If the last term of equation (36) vanishes, equations
(33)436) can be considered as a set of coupled ordinary
differential equations with £ regarded as a parameter.
The last term is vanishing small if either ¢ or
(0/0E)(F'd — @' G) is small.

If the last term in equation (36) is deleted, we have

aren+(c+ 32 F)o = (o

+AG0—-(1+G)o'—no". (37)

Equations (33)35) and (37) are referred to as the first
level of truncation of a local non-similarity model,
which can be considered as four coupled ordinary
differential equations for F, 8, G and ¢ with ¢ regarded
as a parameter. These equations are to be solved subject
to the following boundary conditions

F(&0)=0, 6(0)=1, (38a)
F(¢00)=0, 6 00)=0 (38b)
G0 =0, ¢(0=0 (38¢)
G 0)=0, ¢(§0)=0 (38d)

Thus the local non-similarity solution retains the full
energy equation with approximations made in a
subsidiary equation, and therefore, the local non-
similarity solution ‘is expected to be more accurate
than the local similarity solution.

Numerical solution to the local non-similarity
equations can also be obtained by the integral method
described previously for the local similarity solution.

Integrating equations (33) and (35) we have

F(En) = JO 0, n)drn’, (39a)

N
G, = L @&, n)dn (39b)
The solution to equation (34) is identical to equation
(30) in form, but with P; and Q, replaced by P, and
Q, where

1—-
Pz(f,n)=<c+ﬁF

. )/(1 T én), (409)

1-4 /
Q:(&m) = (lF’O +TéF’¢>/ (1+&n). (40b)

Similarly, the solution to equation (37) is also given by
equation (30), but with P;, Q;, and D, replaced by
P3, Q3 and D3 where

1+4
Pa(c,n)=(é+%F)/(1+¢n), (41a)

Q(én)[ Fo+1G0+(1+G)

—n(Qz—P20’>]/"(1+én>, (41b)

Dy =0. (@i¢)

By assigning a value for ¢ and with an initial guess of
6 and ¢, solutions to F, G, 6, and ¢ can be obtained
by iteration.

Presumably, more accurate results can be obtained
by introducing subsidiary equations from successive
differentiation of the energy equation and deleting the
terms involving ¢ derivatives in the last subsidiary
equation. From the previous work by Sparrow and
Yu [7] and by Minkowycz and Sparrow [8], it is shown
that the first level of truncation of the local non-
similarity solution is sufficiently accurate, and there-
fore, higher levels of truncations have not been pur-
sued in this paper.

5. EXACT SOLUTION FOR 1 =1
It is interesting to note that exact solution for
equations (13) and (14) are possible if wall temperature
varies linearly with height. For the special case of 4 = 1,
equations (15)-(18) are given by

_ <M> [r_o (r__ 1)} @)
o 2\r3
_ 2 o 3
) “
Kp,gBA\?
Y =ro (“—”%) xF(n), (44)
‘T_Too
o) =——=. 45)

where both # and &, are independent of x, with #
depending only on r, and &, is a constant. Furthermore,
for A = 1, the RHS of equation (22) vanishes exactly.
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(e} A=i
- - — .|
24 32 40 48

Fig. 1. Dimensionless temperature and vertical velocity profiles: (2) 2 =8, (b} 4 = 1/2, and
£y A= 1.

Thus equations (21} and {22} become

Fy =6, 46)
i{mmﬁ% FO,~F6=0, (47
on on

FO)=0, 80 =1, (48)

Foo)=0, Bloo)=9. (49)

Equations (46)449) are ijdentical to equations
{25)-(28) with 1 = 1 and & = £p. Thus the solutions to
the local similarity solution is an exact one for A = 1,
and is an approximate one for A # 1.

6. RESULTS AND DISCUSSION

Computations for local similarity solutions given by
equations (25)-{28) as well as the first level truncation
of the local non-similarity solutions given by equations
{33}{35) and equations {37)-(38) are carried out for
A=0,1/4, 13, 1/2 and 3/4. Exact numerical solution
given by equations (46)-{49) for 1 = 1 are also obtained
for the range of &, from 0 to 20. According to
equations {21) and (24), the values of 8 and F’ (where
F' = ufu, and u, = p . gBK{Tw— Tic)/pt) are the same for
any 5. Thus these values are plotted as the vertical
coordinate in Fig. 1. The difference in values between



810

Table 1. Values
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of [ 01,0, 4)]

A=0 A=1/4 A=1/3 A=1/2 A=13/4 7= 1

¢ LS* LNSt LS* ENSt LS* LNSt LS* LNSt LS* LNSt Exact
0.25 0.4855 0.4899 0.6748 0.6729  0.7234  0.7240 08177 08167 09383 09385 1.046
0.50 0.5272 05332 0718  0.7175 0.7672  0.7688 08620 0.8616 09832  0.9837 1.091
075 0.5664 05747 07609 07604  0.8096  0.8120  0.9050  0.9052 1.026 1.028 1.135
1.00  0.6049  0.6149  0.8021 0.8023 08510 08540 09471 0.9478 1.069 1.071 1.179
200 0.7517 0.7668 09587  0.9607 1.009 1.014 1.106 1.110 1.233 1.235 1.345
3.00 0.8915 0.9085 1.106 1.110 1.158 1.164 1.259 1.263 1.387 1.390 1.502
400 1.024 1.044 1.268 1.252 1.301 1.308 1.405 1.409 1.537 1.540 1.654
500 1.154 1.176 1.381 1.394 1.441 1.449 1.549 1.553 1.683 1.687 1.803
600 1.283 1.305 1.518 1.529 1.580 1.589 1.691 1.696 1.829 1.833 1.952
7.00 1413 1.435 1.655 1.667 1.727 1.729 1.835 1.839 1.976 1.980 2.102
8.00 1.544 1.565 1.795 1.806 1.868 1.870 1.980 1.984 2.124 2.128 2253
9.00 1.678 1.696 1937 1.947 2.006 2013 2.127 2.130 2.276 2.278 2.407
10.00 1815 1.830 2.083 2.091 2.153 2.159 2.278 2.280 2.429 2432 2.564

*L.S—Local similarity solution.
tLNS—Local non-similarity solution.

the local similarity solution and the local non-similarity
solution is too small to be plotted in the figures. It is
shown in these figures that both the dimensionless
temperature and vertical velocity have a maximum
value of 1 at y =0; their values decrease as 5 is
increased. The boundary-layer thickness is shown to be
increasing when either 4 is decreased or ¢ is increased.
The magnitude of temperature gradient at the wall,
ie. [—0'(£0,4)], is shown to be increasing as ¢ or 4
is increased. The variation of [ —6'(¢, 0, )] with respect
to ¢ and 4 are also tabulated in Table 1.
The local surface heat flux can be computed from

oT
e tfT)
cr r=ry

which can be expressed in terms of dimensionless
variables to give

(50)

4e(x) = ki A2 <_-—" L K>j XBHD2[ 0,0, 4)], (51)

o

where it should be noted that & = £, for 4 = 1. Equation
(51) is identical to the corresponding expression for
free convection about a vertical flat plate [5] if the
quantities [ —6'(£,0,4)] is replaced by [—8(0,4)]. 1t
follows, therefore, the ratio of the surface heat flux
alongavertical cylinder to that of a flat plate embedded
in the same porous medium and with the same wall
temperature variation is given by

g:0) _ [-01¢,0,1]
4o} [-00.0]

where the subscripts “c” and “p” are used to denote the
quantities associated with a cylinder and a flat plate
respectively. Numerical results for equation (52) based
on both local similarity solution and local non-
similarity solution are tabulated in Table 2 and are
also plotted in Fig. 2 where it is shown that the
difference in values is maximum for 4 = 0 and decrease
to zero as A approaches 1. For a fixed value of &, the

(52)

local heat flux ratio decreases as A increases. For a
fixed value of A, the local heat flux ratio increases
quadratically for 0 < & < 3 and increases linearly when
&> 3.

The overall surface heat flux for a cylinder with a
length L can be computed from
L

Qc=sj

where S is the spanwise dimension which is equal to
2nro for a cylinder with radius ro. Substituting
equation (51) into equation (53) and performing the
integration, we have

[ LgBK\Y 2
Sk,,,A3/2<&—gﬁ—> = [—0(&,0)], for A =1,

i
(54a)

Sk A3 2 )(p=9PK '
" 1-4 o

43
x éz(3ﬁ+1)/(l‘l)L(3l+1)/2 J\ é4/{/(1*}~]
0

g.(x)dx, (53)

Qe

~

x [—0(&,0,)]dé for A#£ 1, (54b)
where
pocL

<Kpoc ﬂg(Tw - Toc )L) ‘

It is noted that the integration for 4 = 1 can be carried
out explicitly since £, is a constant and independent
of x.

We now consider the ratio of total surface heat
transfer for a vertical cylinder to that of a vertical flat
plate with the same length embedded in a porous
medium. The total surface heat flux for a vertical fiat
plate with a length L and a width § = 27r, embedded
in a porous medium is given by [5]

©gBK\? 2
S R ——
(55)

2

lL=—
ro
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F1G. 2. Local heat-transfer ratio for selected values of 1.
Table 2. Local heat flux ratio, g.(¢)/q,(&)
A=0 A=1/4 A=1/3 A=1/2 i=13/4 A=1
I3 LS* LNST LS* LNS+ LS* LNSt LS* LNSt LS* LNSt Exact
0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
050 1.183 1.202 1.140 1.140 1.132 1.132 1.125 1.125 1.101 1.101 1.090
1.00  1.362 1.386 1.271 1.272 1.257 1.258 1.241 1.242 1.200 1.200 1.178
.50 1.531 1.561 1.399 1.400 1.371 1.372 1.350 1.351 1.294 1.294 1.262
200 1.696 1.727 1.520 1.522 1.486 1.488 1.450 1.452 1.383 1.384 1.343
250 1.853 1.889 1.637 1.641 1.597 1.601 1.549 1.552 1.469 1.470 1.420
3.00  2.005 2.044 1.753 1.759 1.707 1.712 1.648 1.652 1.554 1.556 1.496
400 2304 2.351 1.976 1.986 1919 1.927 1.840 1.845 1.721 1.723 1.649
5.00 2601 2.645 2.192 2.205 2.123 2.133 2.030 2.036 1.887 1.890 1.801
6.00 2.894 2.941 2.411 2.429 2.330 2.342 2.221 2.227 2.053 2.056 1.951
7.00 3.189 3.236 2.631 2.650 2.538 2.551 2.410 2.417 2.218 2221 2.102
8.00 3.481 3.530 2.851 2.870 2.747 2.760 2.602 2.609 2.385 2.389 2254
9.00 3.771 3.821 3.071 3.090 2.953 2.967 2.791 2.799 2.551 2.555 2.406
10.00 4.060 4.110 3.289 3.309 3.159 3.173 2.981 2.989 2.721 2.725 2.561

*LS—Local similarity solution.
+LNS—Local non-similarity solution.

It follows that the ratio of equation (54) to equation
(55) gives

Q. [~0(&0,0,1)]a=1
o 2 e el 56
Qpli=1 [—00, H)]s=1 (56a)
and
% _(1+3A’) —(1+34)/(1-2)
Opliws = =D
fL ’
[~6E0,0] 0,0,
XL miwl Pde. (56b)

Numerical integration was carried out for the integral
in equation (56b) with 4 = 0, 1/4, 1/3, 1/2 and 3/4 for
the range of £, from 0 to 10. It is found that (1) the

values of Q./Q, given by equation (56b) are practically
independent of A (within 4%) for both the local
similarity and the local non-similarity solution; (2) the
difference in values given by the local similarity and the
non-local similarity solution is within 2% as is shown
in Fig. 3. Thus we may conclude from the numerical
results that

0f L [-0C0.0.7e
Q. anyl_ [—B’(O,,{)L=1 . (57

It follows that

~ 32 P=9BK ‘*(_2_~ [+3N2 (58
Q.= CSknA ( #a ey , (58)
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Fi1G. 3. Total heat-transfer ratio for any A
Table 3. Values of C(£r, 4) and C(&p)
C(ér. A) C(o)
Srorde A=0 A=1/4 A=1/3 A=1/2 i+=3/4 /=1
0.0 04440  0.6303  0.6788 0.7615  0.8926 1.000
0.5 0.4840  0.6900 0.7400 08300 09729 1.090
1.0 0.5230  0.7425 0.7996 0.8970 1.051 1.178
1.5 0.5603  0.7954 08566 09610 1.126 1.262
20 0.5962  0.8464 09116 1.023 1.199 1.343
2.5 0.6305 0.8950  0.9639 1.081 1.267 1.420
30 0.6642  0.9429 1.015 1.139 1.335 1.496
4.0 0.7322 1.039 1.119 1.256 1.472 1.649
50 0.7996 1.135 1.223 1.371 1.608 1.801
6.0 0.8662 1.230 1.324 1.486 1.741 1.951
7.0 0.9333 1.325 1.427 1.601 1.876 2.102
8.0 1.001 1.421 1.530 1.716 2.012 2254
9.0 1.068 1.5t7 1.633 1.832 2.148 2.406
10.0 1.137 1.614 1.738 1.950 2.286 2.561

where the values of C, which is tabulated in Table 3,
depends on &; and 4 for A # 1, and depends on &, for
A=1.
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Free convection about a vertical cylinder

CONVECTION NATURELLE AUTOUR D’'UN CYLINDRE VERTICAL
NOYE DANS UN MILIEU POREUX

Résumé—On effectue une analyse de la convection naturelle autour d’un cylindre vertical noyé dans un
milieu poreux sature, la température a la surface du cylindre variant suivant une fonction puissance x
de la distance au bord d’attaque. Dans le cas particulier ou la température de surface varie linéairement
avec x, c'est a dire A =1, une solution exacte est obtenue dans le cadre des approximations de la
couche limite. Pour les autres valeurs de 4, des solutions approchées sont obtenues a partir de modeéles avec
et sans hypotheése de similitude locale. Il apparait que les solutions en similitude locale sont suffisamment
précises pour toutes les applications pratiques. On donne des expressions analytiques pour les flux
thermiques pariétaux locaux et globaux.

FREIE KONVEKTION AN EINEM SENKRECHTEN- IN EIN
POROSES MEDIUM EINGEBETTETEN ZYLINDER

Zusammenfassung—Die freie Konvektion an einem senkrechten, in ein gesittigtes poréses Medium
eingebetteten Zylinder wird analytisch behandelt. Die Oberflichentemperatur des Zylinders dndert sich
mit x“, einer Potenzfunktion des Abstandes von der Anstrémkante. Im Rahmen der Grenzschichtnaherung
wird eine exakte Losung fiir den Spezialfall erhalten, daB sich die Oberflichentemperatur linear mit x,
d. h. 2=1 &ndert. Fiir andere Werte von A werden Niherungslésungen aufgrund von o6rtlichen
Ahnlichkeits- und 6rtlichen Nichtiahnlichkeitsmodellen erhalten. Es zeigt sich, daB die ortlichen
Ahnlichkeitsldsungen hinreichend genau fiir praktische Zwecke sind. Analytische Beziehungen fiir den
ortlichen Oberflichen-Wiarmestrom und den Gesamtoberflichen-Wirmestrom werden angegeben.

CBOBOJHAA KOHBEKLIMA BOKPYI' BEPTUKAJIBHOIO LMJIMHIPA,
NOMENEHHOI'O B MOPUCTYHKO CPEAY

AHHOTAUNS — AHANH3UPYeTCs CBOGOAHO-KOHBEKTHBHOE TEYEHHE BOKPYI BEPTHMKAILHOIO LMAMHADA,
TIOMELIEHHOTO B HACBLUEHHYIO MIOPHCTYIO Cpedy, rie TeMNEpaTypa NOBEPXHOCTH LUMIMHIAPA H3IMEHA-
€Tcs Kak x*, T. €. cTeneHHas GpyHKLHA PACCTOAHUA OT NepeiHel KPOMKH. B npubnuxenun norpanuy-
HOTO CJIOA TIOJYYEHO TOYHOE PELUeHHe ANs Clyvas, KOTAa TEMNEpaTypa MOBEPXHOCTH M3MEHSETCS
JAMHEHHO C W3MEHEHHEM X, T. €. Korda A= l. [Ina ApYTHX 3HaucHMi A MONydYeHb! MpHOIMXeHHbiE
pelleHNs, OCHOBAHHbIE HAa MOJIENAX NOKaNbHON aBTOMOZAENBHOCTH M JIOKA/NLHOW HEaBTOMOME/b-
HocTH. HaliaeHo, 4TO OCHOBaHHbIE Ha JIOKANLHON ABTOMOAENLHOCTH PELUEHHA ABJISAIOTCA JOCTATOYHO
TOYHBIMH 1J18 BCEX MPAaKTHYECKUX ciy4aes. FlonyyeHbl aHAIHTHYECKHE BbIPAKEHHA 1S TOKANLHOTO
M CYMMapHOTO TEII0BbIX NOTOKOB HA MOBEPXHOCTH.
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