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Abstract-An analysis is made for free convective flow about a vertical cylinder embedded in a saturated 
porous medium, where surface temperature of the cylinder varies as xi, a power function of distance 
from the leading edge. Within the framework of boundary-layer approximations, exact solution is 
obtained for the special case where surface temperature varies linearly with x, i.e. 1 = 1. For other 
values of 1, approximate solutions based on local similarity and local non-similarity models are obtained. 
It is found that the local similarity solutions are sufficiently accurate for all practical purposes. 

Analytical expressions for local surface heat flux and overall surface heat flux are obtained. 

NOMENCLATURE 

constant defined by equation (6b); 
constant defined by equation (58); 
constant defined by equation (31~); 
specific heat of the convective fluid; 
constant given by equation (31d); 
constant given by equation (41~); 
transformed stream function defined by 
equation (17); 
auxiliary function defined by equation (32a); 
acceleration of gravity; 
permeability of the porous medium; 
thermal conductivity of the porous medium; 
length of the cylinder; 
quantity defined by equation (31a); 
quantity defined by equation (40a); 
quantity defined by equation (41a); 
pressure; 

surface-integrated heat-transfer rate; 
quantity defined by equation (31b); 
quantity defined by equation (40b); 
quantity defined by equation (41b); 
local heat transfer rate per unit area; 
modified local Rayleigh number, 

Ra, = Kpm&G-Wlp~; 
radial coordinate; 

radius of cylinder; 
spanwise dimension, S = 2rrro ; 
temperature; 
velocity component in x-direction; 
reference velocity, u, = Kp, g/?( T, - T,)/p; 

reference velocity in r-direction; 
axial coordinate. 

Greek symbols 

K equivalent thermal diffusivity; 

B? coefficient of thermal expansion ; 

pseudo-similarity variable defined by 
equation (15); 
dimensionless temperature defined by 
equation (18); 
constant defined by equation (6b); 
viscosity of convective fluid; 
density of convective fluid; 
stretched streamwise coordinate defined by 
equation (16); 
constant defined by 

constant defined by 

auxiliary function defined by equation (32b); 
stream function. 

Subscripts 

c, quantities associated with a cylinder; 

P. quantities associated with a flat plate; 

W, quantities on the surface of the cylinder; 

a, quantities at infinity. 

1. INTRODUCTION 

THE STUDY of free convection from the outer surface 
of a heated vertical cylinder embedded in a saturated 

porous medium has important geophysical and 
engineering applications. For example, as a result of 
volcanic activities or tectonic movements, magmatic 
intrusion may occur at shallow depths in the earth’s 
crust [l]. The intrusive magma may take the form of a 
cylindrical shape. If the intrusive magma is trapped in 
an aquifer, free convective flow can be generated in the 
groundwater adjacent to the hot intrusives. A study of 
temperature distribution around the intrusives and the 
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associated heat flux distribution will aid in an assess- 
ment and the evaluation of geothermal resources during 
geophysical exploration. Furthermore, the heat- 
transfer coefficients obtained from this study will be 

useful to estimate the cooling rate of intrusive bodies 
and consequently the life span of a geothermal 

reservoir; it will also be useful to calculate the heat 
loss of underground casing and piping systems for the 
optimum design of geothermal power plants. 

It has been established that a viable geothermal 
reservoir for power generation must have a hot heat 

source for the continuous supply of energy, and a highly 
permeable formation to ensure sustained delivery of 
fluids to production wells at adequate rates [2]. Under 
these conditions, free convective flow in geothermal 
reservoirs will have a high Rayleigh number. Accord- 
ingly, boundary-layer approximations, analogous to 
the classical viscous theory, can be applied to free 

convective flow in a porous medium. This has been 

done by Wooding [3] to treat the problem of free 
convection about a line source and a point source, 

as well as for free convection above two finite heated 
vertical plates embedded in a porous medium. The 
boundary layer approximations were also invoked by 
McNabb [4] to treat the problem of free convective 
flow in a porous medium above a horizontal heated 
plate. Most recently, Cheng and his co-workers [5,6] 

have obtained similarity solutions for free convection 
in a porous medium adjacent to vertical and horizontal 
plates with wall temperatures being a power function 

of distance. 
In this paper we shall study convective flow about a 

vertical heated cylinder embedded in a saturated 
porous medium, where surface temperature of the 
cylinder varies as x’, a power function of distance from 
the leading edge. Within the framework of boundary- 
layer approximations, exact solution is obtained for the 
special case where surface temperature varies linearly 
with x, i.e. 3. = 1. For other values of i, approximate 

solutions based on local similarity and local non- 
similarity methods [7, 81 are obtained. It is found that 
the local similarity solutions are sufficiently accurate 
for all practical purposes. 

2. FORMULATION OF THE PROBLEM 

Consider the problem of steady free convection 
about a vertical cylinder of radius r. and embedded 
in a saturated porous medium with a prescribed 
axial symmetric wall temperature. If we assume that 

(1) the convective fluid and the porous medium are 
everywhere in local thermodynamic equilibrium, (2) the 
temperature of the fluid is everywhere below boiling, 
(3) properties of the fluid and the porous medium are 
everywhere isotropic and homogeneous, and (4) 
Boussinesq approximation is employed, the governing 
equations in a cylindrical coordinate system are given 

by 

where u and v are the velocity components in x 
r-directions, p, p and p are the density, viscosity 

(2) 

(3) 

(4) 

(5) 

and 
and 

the thermal expansion coefficient of the fluid, K is the 

permeability of the saturated porous medium, 
c( = k&K&S is the equivalent thermal diffusivity 
where k, denoting the thermal conductivity of the 

saturated porous medium and (PC,), the density and 
specific heat of the fluid. T, p and g are respectively 

the temperature, pressure and the gravitational 
acceleration. The subscript “cd” denotes the condition 
at infinity. The appropriate boundary conditions for the 
problem are 

r = ro, L’ = 0, T= T, = Tat-Ax”, (6a,b) 

r+cc, u=o, T=T,, Ua, t-4 

where A > 0. In equation (6b) we have assumed that 
the prescribed wall temperature is a power function of 
distance from the leading edge. 

The continuity equation is automatically satisfied by 
introducing the stream function $ as 

& ax 

The governing equations and boundary conditions in 

terms of $ and T are given by 

with the remaining two boundary conditions for T 
being given by equations (6b) and (7b). 

3. BOUNDARY-LAYER EQUATIONS 

The boundary-layer approximations similar to those 
by Wooding [3], McNabb [4], Cheng and Minkowycz 
[IS] and Cheng and Chang [6] can now be applied if 
we assume that convection takes place within a thin 
layer adjacent to the vertical surface of the cylinder. 
With these simplifications, equations (9) and (10) 
become 

(13) 

a dT 

i I( a*aT a*aT 
“5 % = au ax ax ai- 1. (14) 



Free convection about a vertical cylinder 807 

We now attempt to transform equations (13) and (14) 

into a set of ordinary differential equations. For this 
purpose we introduce the following new dimensionless 
variables 

= !!J$+[$ l)], (15) 

f 2x 1 
__ (16) 

=&(RG)*’ 

where Ra, = Kp, g/?x( T, - T,,)/p is the modified local 
Rayleigh number in a saturated porous medium. It is 

worth mentioning that for a thin boundary layer where 
r does not differ appreciably from ro, the quantity inside 
the brackets in equation (15) reduces to y (where 

y = r - ro) and consequently q reduces to the flat plate 
similarity variable given in [5]. Next we introduce the 

dimensionless stream function and temperature F and 
0 given by 

* = r0 

( 

aKp,gB(T,-- =,)x 

> 

+ 
W d = ~r0UWfF(5, 91, 

P 

(17) 

e(5, ‘I) = z. (18) 

which are identical to the relitioi for a flat plate [S] 

except that F is now a function of both 5 and ‘I, and 
r. is introduced to give proper dimension for II/. 

It can be shown that velocity components in terms 
of the new variables are 

and 

u= 
&&G-=LJF 

0, (19) 
p 

ro aKp,Bg(T,-T,) * 

O=2r ( PX > 

xC(l-~)(rlF,-5F,)-(l+i)Fl, (20) 

whereas the governing equations (13) and (14) with 
appropriate boundary conditions in terms of the new 
variables are 

1-i 
= 2 5(F, 0, - 0s F,) 3 (22) 

F(5,0)=0, w,o)= 1, (2% b) 

F’(<, co) = 0) eg, co) = 0. (2% b) 

It is worth noting that equations (21) and (22) are 
identical to those for free convection about a vertical 
flat plate [5] if 4 = 0. Thus, any deviation from 5 = 0 
is a measure of transverse curvature effects. We shall 
now obtain approximate solutions for 1# 1 and exact 
solutions for 1 = 1. 

4. APPROXIMATE SOLUTIONS FOR i # 1 

(A) Local similarity solution 
When the value of 5 or the values of e5 and F, are 

both small, the RHS of equation (22) can be deleted. 
With this approximation, equations (21H24) do not 
have derivatives with respect to 5 and thus can be 
considered as a coupled pair of ordinary differential 
equations with 4 regarded as a prescribed parameter. 
This is the so-called local similarity approximation. 
Thus, the local similarity equations are given by 

and 

F”=e’, (25) 

(1+5~)ef~+(r+~~~~-;rr’R = 0, (26) 

with boundary conditions given by 

F&O) = 0, &LO) = 1, (2% W 
m,4=0, a,4=0, @a, b) 

where the primes denote partial differentiation with 

respect to q. We now obtain numerical solution to 
equations (25) and (26) by an integral method. To this 

end, we first integrate equation (25) and impose con- 
ditions (27a) and (27b) to give 

F(5, rl) = 
I 

’ e(5, q)dvl . (29) 
0 

We now turn our attention to equation (26) which can 
be considered as a second-order ordinary differential 
equation for 8. The solution for 0 is given by 

xexp{- /P,K,~)drijdri+&, (30) 

where 

and 
(3lc) 

D1 = 1, (31d) 

with constants (31~) and (31d) obtained by imposing 
equation (30) with boundary conditions (27) and (28). 

By assigning a successive value of < and assuming 
initial profile for 8, values of stream function and 
temperature at a particular location (5,~) can be. 
obtained by iteration from the integrals given by 
equations (29) and (30). The solution thus obtained is 
an approximate one since some terms in the energy 
equation are assumed to be small. 
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(B) Local non-similarity solution 
More accurate results can be obtained by the 

so-called local non-similarity solution which retains the 
full energy equation. To this end, we let 

G(<, ‘I) = $3 WI 

and equations (21) and (22) can be rewritten as 

F”=e’, (33) 

= IF’!9 ++4. (34) 

It is noted that equations (33) and (34) do not have 
derivatives with respect to 5. However, we now have 
four unknowns and therefore two more equations are 
needed. For this purpose, we differentiate equations (33) 
and (34) with respect to 5 to give 

G” = 4’ , (35) 

-(l+G)B’-flB”+l+$(F’$-H’G), (36) 

where we have made use of equation (32). 
If the last term of equation (36) vanishes, equations 

(33)-(36) can be considered as a set of coupled ordinary 
differential equations with < regarded as a parameter. 
The last term is vanishing small if either 5 or 
(a/a<)(F’~$ - 0’G) is small. 

If the last term in equation (36) is deleted, we have 

+AG’0-(l+G)B’-~0”. (37) 

Equations (33)-(35) and (37) are referred to as the first 
level of truncation of a local non-similarity model, 
which can be considered as four coupled ordinary 
differential equations for F, 0, G and # with 5 regarded 
as a parameter. These equations are to be solved subject 
to the following boundary conditions 

F(<,O)=O, @(LO)= 1, (38a) 

F’(5, co) = 0, e(r, a) = 0, (38b) 

GKO)=O, &@,O)=O, (38~) 

G%,co)=O, $(Lco)=O. (38d) 

Thus the local non-similarity solution retains the full 
energy equation with approximations made in a 
subsidiary equation, and therefore, the local non- 
similarity solution ‘is expected to be more accurate 
than the local similarity solution. 

Numerical solution to the local non-similarity 
equations can also be obtained by the integral method 
described previously for the local similarity solution. 

Integrating equations (33) and (35) we have 

*‘1 
F(5, n) = 

J 
e(5, $) d$ . 

0 
(394 

WW 

The solution to equation (34) is identical to equation 
(30) in form, but with Pi and Qi replaced by PZ and 
Q2 where 

&(<,n)= <+FF+q<G 
i * >i 

‘(l+[rl),(4Oa) 

Qz(<,r/)= W~+++#J ‘(l+tq). 
C 11 

(40b) 

Similarly, the solution to equation (37) is also given by 
equation (30), but with PI, Q1, and DI replaced by 
P3, Q3 and 03 where 

&(5,~)= (<+yF)/(l+Sq), (41a) 

Q3(&q)= FF’4+AG9+(l+G)ef 
[ 

-rl(Qz-&8') /U+taL @lb) 
I/ 

D3=0. (4lc) 

By assigning a value for 5 and with an initial guess of 
f3 and 4, solutions to F, G, 8, and 4 can be obtained 
by iteration. 

Presumably, more accurate results can be obtained 
by introducing subsidiary equations from successive 
differentiation of the energy equation and deleting the 
terms involving 5 derivatives in the last subsidiary 
equation. From the previous work by Sparrow and 
Yu [7] and by Minkowycz and Sparrow [8], it is shown 
that the first level of truncation of the local non- 
similarity solution is sufficiently accurate, and there- 
fore, higher levels of truncations have not been pur- 
sued in this paper. 

5. EXACT SOLUTION FOR 1= 1 

It is interesting to note that exact solution for 
equations (13) and (14) are possible if wall temperature 
varies linearly with height. For the special case of I = 1, 
equations (15)(18) are given by 

(43) 

$ = r. (lKp;gBA)“F(q). (44) 

T-T, 
eh) =*Ax, (45) 

where both q and to are independent of x, with q 
depending only on r, and to is a constant. Furthermore, 
for 1 = 1, the RHS of equation (22) vanishes exactly. 
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FIG. 1. Dimensionless temperature and vertical velocity profiles: [a) A = Q, (b) 1s I,& and 
(c).2= 1. 

Thus equations (21) and 422) become 

F,,, e @,, > 

F{OO)=O, O(O)= I, WI 
F)(co) = 0, &WI) = 5. WI 

Equations (46H49) are identical to equations 
(2SH28) with 1% 1 and 2j = F.&. Thus the solutions tq 
the local similarity solution is an exact one for A J I, 
and is an approximate one for a ?t 1. 

6. RESUL’B AND DISCUSSION 

Computations for locat similarity solutions given by 
equations (25)-(28) as well as the first level truncation 
of the local non-similarity solutions given by equations 
(33)-635) and equations (37)-(38) are carried out for 
/z = 0, l/4, l/3, l/2 and 314. Exact numerical solution 
given by equations (46H49) for A = 1 are also obtained 
for the range of Co from 0 to 20. According to 
equations (21) and (24), the values of 8 and F (where 
F = M/G and U, I p~g~K(T,- X&fare the same for 
any 1. Tkms these values are ptoned aa the vertical 
coordinate in Fig. 1. The difference in values between 
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Table 1, Values of r -Q’(t, 0. i)] 

i,=o i” = l/4 i = l/3 i= 1;2 A= 314 ;. = I 

5 LS* LNSt LS* LNSt LS* LNSt LS* LNSt LS* LNSt Exact 

0.25 0.4855 0.4899 0.6748 0.6729 0.7234 0.7240 0.8 177 0.8167 0.9383 0.9385 1.046 
0.50 0.5272 0.5332 0.7186 0.7175 0.7672 0.7688 0.8620 0.8616 0.9832 0.9837 1.091 
0.75 0.5664 0.5747 0.7609 0.7604 0.8096 0.8120 0.9050 0.9052 1.026 1.028 1.135 
1 .OO 0.6049 0.6149 0.8021 0.8023 0.8510 0.8540 0.947 1 0.9478 1.069 1.071 1.179 
2.00 0.7517 0.7668 0.9587 0.9607 I.009 1.014 1.106 1.110 1.233 1.235 1.345 
3.00 0.8915 0.9085 1.106 1.110 I.158 1.164 1.259 1.263 1.387 1.390 1.502 
4.00 1.024 1.044 1.268 1.252 1.301 1.308 1.405 1.409 1.537 1.540 I.654 
5.00 1.154 1.176 1.381 1.391 1.441 1.449 1.549 1.553 1.683 1.687 1.803 
6.00 1.283 1.305 1.518 1.529 1.580 1.589 1.691 1.696 1.829 1.833 1.952 
7.00 1.413 1.435 I.655 1.667 1.727 1.729 1.835 1.839 1.976 1.980 2.102 
8.00 1.544 1.565 1.795 1.806 1.868 1.870 1.980 1.984 2.124 2.128 2.253 
9.00 1.678 1.696 1.937 1.947 2.006 2.013 2.127 2.130 2.276 2.278 2.407 

10.00 1.8 I5 1.830 2.083 2.091 2.153 2.159 2.278 2.280 2.429 2.432 2.564 

*LS-Local similarity solution. 
tLNS-Local non-similarity solution. 

the local similarity solution and the local non-similarity 
solution is too small to be plotted in the figures. It is 

shown in these figures that both the dimensionless 
temperature and vertical velocity have a maximum 
value of 1 at 9 = 0; their values decrease as q is 
increased. The boundary-layer thickness is shown to be 
increasing when either A is decreased or 4 is increased. 
The magnitude of temperature gradient at the wall, 
i.e. [ -Q’(<, 0, A)], is shown to be increasing as 5 or i 
is increased. The variation of [ - B’(& 0, A)] with respect 
to t and d are also tabulated in Table 1. 

The local surface heat flux can be computed from 

which can be expressed in terms of dimensionless 
variables to give 

q,(x) = k,A3” 5 
! i 

* .‘~-‘~“-~)~‘[-e’(cL,o,~)], (51) 

where it should be noted that 5 = 50 for i, = 1. Equation 
(51) is identical to the corresponding expression for 
free convection about a vertical flat plate [5] if the 

quantities [ -0’(<,O,A)] is replaced by [-0’(0, n)]. It 

follows, therefore, the ratio of the surface heat flux 
along a vertical cylinder to that of a flat plate embedded 
in the same porous medium and with the same wall 

temperature variation is given by 

q,(x) [-w,o~41 
4po= [-e’(O,4] ’ 

(52) 

where the subscripts “c” and “p” are used to denote the 
quantities associated with a cylinder and a flat plate 
respectively. Numerical results for equation (52) based 
on both local similarity solution and local non- 
similarity solution are tabulated in Table 2 and are 
also plotted in Fig. 2 where it is shown that the 
difference in values is maximum for 1 = 0 and decrease 
to zero as /I approaches 1. For a fixed value of 5, the 

local heat flux ratio decreases as i increases. For a 
fixed value of A, the local heat flux ratio increases 
quadratically for 0 < 5 d 3 and increases linearly when 

5 > 3. 
The overall surface heat flux for a cylinder with a 

length L can be computed from 

Qc= S 
I 
Lq,b4dx, (53) 
0 

where S is the spanwise dimension which is equal to 

2nro for a cylinder with radius ro. Substituting 
equation (51) into equation (53) and performing the 
integration, we have 

(544 

Qc = { SkmA3;‘(&)(@/) 

s <I. 
x 5~~31+ll/(l-I~~~3A+l)/z 

0 5 

&a,(1 -i., 

x [-@‘(<,O,A)]d& for i. # 1, (54b) 

where 

It is noted that the integration for i = 1 can be carried 
out explicitly since to is a constant and independent 
of x. 

We now consider the ratio of total surface heat 
transfer for a vertical cylinder to that of a vertical flat 
plate with the same length embedded in a porous 
medium. The total surface heat flux for a vertical flat 
plate with a length L and a width S = 27cro embedded 
in a porous medium is given by [5] 

Q, = SLA,;,(~)‘.(~)~1+3”“z[-0’(0,~)]. 
(55) 
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Local non-similarity solutions 

- - - - -Local simdority solutnns 

30 

IO 
0 2 4 6 6 I 

E 

FIG. 2. Local heat-transfer ratio for selected values of 1. 

Table 2. Local heat flux ratio, qe(<)/qp([) 

a=0 a= l/4 1. = l/3 1 = l/2 a = 314 

5 LS* LNSt LS* LNSt LS* LNSt LS* LNSt LS* LNSt 

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.50 1.183 1.202 1.140 1.140 1.132 1.132 1.125 1.125 1.101 1.101 
1.00 1.362 1.386 1.271 1.272 1.257 1.258 1.241 1.242 1.200 1.200 
1.50 1.531 1.561 1.399 1.400 1.371 1.372 1.350 1.351 1.294 1.294 
2.00 1.696 1.727 1.520 1.522 1.486 1.488 1.450 1.452 1.383 1.384 
2.50 1.853 1.889 1.637 1.641 1.597 1.601 1.549 1.552 1.469 1.470 
3.00 2.005 2.044 1.753 1.759 1.707 1.712 1.648 1.652 1.554 1.556 
4.00 2.304 2.351 1.976 1.986 1.919 1.927 1.840 1.845 1.721 1.723 
5.00 2.601 2.645 2.192 2.205 2.123 2.133 2.030 2.036 1.887 1.890 
6.00 2.894 2.941 2.411 2.429 2.330 2.342 2.221 2.227 2.053 2.056 
7.00 3.189 3.236 2.631 2.650 2.538 2.551 2.410 2.417 2.218 2.221 
8.00 3.481 3.530 2.851 2.870 2.747 2.760 2.602 2.609 2.385 2.389 
9.00 3.771 3.821 3.071 3.090 2.953 2.967 2.791 2.799 2.551 2.555 

10.00 4.060 4.110 3.289 3.309 3.159 3.173 2.981 2.989 2.721 2.125 

a=1 

Exact 

1.000 
1.090 
1.178 
1.262 
1.343 
1.420 
1.496 
1.649 
1.801 
1.951 
2.102 
2.254 
2.406 
2.561 

*LS-Local similarity solution. 
tLNS-Local non-similarity solution. 

It follows that the ratio of equation (54) to equation 

(55) gives 

QC r-8’GJ>o>41a=1 
i&1= [-e’(o,4],=1 ’ 

(564 

and 

QE 
Q 

_ (1+345i(1+3a),w) 
pit1 (l-4 

X s <‘ c - e4L 0,4] 
0 C-wl4] 

(4a’(1 -“‘d& (56b) 

Numerical integration was carried out for the integral 

in equation (56b) with J. = 0, l/4, l/3, l/2 and 314 for 
the range of tr. from 0 to 10. It is found that (1) the 

values of QJQ,, given by equation (56b) are practically 
independent of 1 (within 4%) for both the local 
similarity and the local non-similarity solution; (2) the 
difference in values given by the local similarity and the 
non-local similarity solution is within 2% as is shown 
in Fig. 3. Thus we may conclude from the numerical 
results that 

QC ~ C-wo,o,4]a=l 
Q, anya - C-wJ4la=1 . (57) 

It follows that 

QE 2 CSk,A3’2 pmgBK ’ (,-) (&)L(~+“)~‘, (58) 
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7x 20 
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Local non-slmbmty solution / 

/ 
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/ 

IOJ, 
0 2 4 6 8 IO 

CL 

FIG. 3. Total heat-transfer ratio for any h 

Table 3. Values of C(&, I,) and C(~O) 

C(& 1) C(<o) 

in or 50 1” = 0 I. = l/4 i. = l/3 E” = 112 i = 314 i. = I 

0.0 0.4440 0.6303 0.6788 0.7615 0.8926 1.000 
0.5 0.4840 0.6900 0.7400 0.8300 0.9729 1.090 
1.0 0.5230 0.7425 0.7996 0.8970 1.051 I.178 
1.5 0.5603 0.7954 0.8566 0.9610 1.126 I.262 
2.0 0.5962 0.8464 0.9116 1.023 1.199 1.343 
2.5 0.6305 0.8950 0.9639 1.081 1.267 1.420 
3.0 0.6642 0.9429 1.015 1.139 1.335 I.496 
4.0 0.7322 1.039 1.119 1.256 1.472 1.649 
5.0 0.7996 1.135 1.223 1.371 1.608 1.801 
6.0 0.8662 1.230 1.324 1.486 1.741 1.951 
7.0 0.9333 1.325 1.427 1.601 1.876 2.102 
8.0 1.001 1.421 1.530 1.716 2.012 2.254 
9.0 1.068 1.517 1.633 1.832 2.148 2.406 

10.0 1.137 1.614 1.738 1.950 2.286 2.561 

where the values of C, which is tabulated in Table 3, 3. 

depends on tL and I for i. # 1, and depends on to for 

I= 1. 4. 
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R&sum&On effectue une analyse de la convection naturelle autour dun cyhndre vertical noye dans un 
milieu poreux sature, la temperature a la surface du cylindre variant suivant une fonction puissance x 
de la distance au bord d’attaque. Dans le cas particulier ou la temperature de surface varie hneairement 
avec x, c’est a dire 1. = 1, une solution exacte est obtenue dans le cadre des approximations de la 
couche limite. Pour les autres valeurs de i., des solutions approchtes sont obtenues a partir de modtles avec 
et sans hypothese de similitude locale. I1 apparait que les solutions en similitude locale sont suffisamment 
precises pour toutes les applications pratiques. On donne des expressions analytiques pour les flux 

thermiques parittaux locaux et globaux. 

FREIE KONVEKTION AN EINEM SENKRECHTEN- IN EIN 
PORGSES MEDIUM EINGEBETTETEN ZYLINDER 

Zusammenfassung-Die freie Konvektion an einem senkrechten, in ein gesattigtes pordses Medium 
eingebetteten Zylinder wird analytisch behandelt. Die Oberfllchentemperatur des Zylinders lndert sich 
mit x’, einer Potenzfunktion des Abstandes von der Anstromkante. Im Rahmen der Grenzschichtnaherung 
wird eine exakte Losung fur den Spezialfall erhalten, da13 sich die Oberfhichentemperatur linear mit x, 
d. h. I = 1 Indert. Fur andere Werte von 1. werden Nlherungslosungen aufgrund von ortlichen 
Ahnlichkeits- und orthchen Nichtlhnlichkeitsmodellen erhalten. Es zeigt sich, da8 die ortlichen 
Ahnlichkeitslosungen hinreichend genau fur praktische Zwecke sind. Analytische Beziehungen fur den 

ortlichen Oberflachen-Wlrmestrom und den Gesamtoberfllchen-Warmestrom werden angegeben. 

CBO6OaHAJI KOHBEKIHDI BOKPYF BEPTMKAJIbHOI-0 UMJIMH~PA, 
I-IOMEILIEHHOI-0 B I-IOPMCTYIO CPEAY 

~OTaUHSI-~HaJl&i3,spyeTC5l CBO6OnHO-KOHBeKTHBHOe TeYeHHe BOKpyr BepTBKaJlbHOrO U&imiHnpa, 

nOMeqeHHOr0 B HaCbLUeHHyK7 nOpHCTyloCPeAy,rfieTeMnepaTypa nOBepXHOCTH UliJWiHJlpaB3MeH5l- 

ercrKaKx",~.e.cTeneHHaR~y~~UWflpaccTonHUIl~~nepenHe~ K~oMKH. B npe6nexcewmi norpaHw+ 

Hero cnosi nonyveH0 ToYHoe pemeHse nna cnyyas, Korga TeMnepaTypa noBepxHocTH ii3MeHneTcfi 

nanefino c n3Meueririeh4 x, T. e. Korea h= 1. ,&a npyrwx 3HaseHHB h nonyyeiibl npH6nexeHHble 

PeUleHHfl, OCHOBaHHbIe Ha MOAeJlRX JlOKaJlbHOfi aBTOMOneJlbHOCTH H JlOKaJlbHOk HeaBTOMOneJlb- 

HOCTH.HatineHo,YTOOCHOBaHHble HaJlOKanbHOtiaBTOMOneJlbHOCTH peIIleHH%l RBJIRIOTCR~OCTBTO~HO 

TovHbmm nnn ncex npaKTwecKlixcnysaeB. IlonyveHbI aHanHTw4ecKHe BblpaxeHm arm noKanbHor0 

H CyMMapHOrO TeIlJlOBblX nOTOKOB Ha nOBepXHOCTH. 


